2,030 research outputs found

    Millimeter Interferometric HCN(1-0) and HCO+(1-0) Observations of Luminous Infrared Galaxies

    Full text link
    We present the results on millimeter interferometric observations of four luminous infrared galaxies (LIRGs), Arp 220, Mrk 231, IRAS 08572+3915, and VV 114, and one Wolf-Rayet galaxy, He 2-10, using the Nobeyama Millimeter Array (NMA). Both the HCN(1-0) and HCO+(1-0) molecular lines were observed simultaneously and their brightness-temperature ratios were derived. High-quality infrared L-band (2.8-4.1 micron) spectra were also obtained for the four LIRGs to better constrain their energy sources deeply buried in dust and molecular gas. When combined with other LIRGs we have previously observed with NMA, the final sample comprised nine LIRGs (12 LIRGs' nuclei) with available interferometric HCN(1-0) and HCO+(1-0) data-sufficient to investigate the overall trend in comparison with known AGNs and starburst galaxies. We found that LIRGs with luminous buried AGN signatures at other wavelengths tend to show high HCN(1-0)/HCO+(1-0) brightness-temperature ratios as seen in AGN-dominated galaxies, while the Wolf-Rayet galaxy He 2-10 displays a small ratio. An enhanced HCN abundance in the interstellar gas surrounding a strongly X-ray-emitting AGN, as predicted by some chemical calculations, is a natural explanation of our results.Comment: 43 pages, 11 figures, accepted for publication in Astronomical Journal. Higher resolution version is available at http://optik2.mtk.nao.ac.jp/~imanishi/Paper/HCN2/HCN2.pd

    A Systematic Study of X-Ray Flares from Low-Mass Young Stellar Objects in the Rho Ophiuchi Star-Forming Region with Chandra

    Full text link
    We report on the results of a systematic study of X-ray flares from low-mass young stellar objects, using Chandra observations of the main region of the Rho Oph. From 195 X-ray sources, including class I-III sources and some young brown dwarfs, we detected a total of 71 X-ray flares. Most of the flares have the typical profile of solar and stellar flares, fast rise and slow decay. We derived the time-averaged temperature (kT), luminosity (L_X), rise and decay timescales (tau_r and tau_d) of the flares, finding that (1) class I-II sources tend to have a high kT, (2) the distribution of L_X during flares is nearly the same for all classes, and (3) positive and negative log-linear correlations are found between tau_r and tau_d, and kT and tau_r. In order to explain these relations, we used the framework of magnetic reconnection model to formulate the observational parameters as a function of the half-length of the reconnected magnetic loop (L) and magnetic field strength (B). The estimated L is comparable to the typical stellar radius of these objects (10^{10-11} cm), which indicates that the observed flares are triggered by solar-type loops, rather than larger ones (10^{12} cm) connecting the star with its inner accretion disk. The higher kT observed for class I sources may be explained by a higher magnetic field strength (about 500 G) than for class II-III sources (200-300 G).Comment: 33 pages, 7 figures, accepted for publication in PASJ, the complete version of tables are available at ftp://ftp-cr.scphys.kyoto-u.ac.jp/pub/crmember/kensuke/PASJ_RhoOph/KI_all.tar .g

    Detections of water ice, hydrocarbons, and 3.3um PAH in z~2 ULIRGs

    Get PDF
    We present the first detections of the 3um water ice and 3.4um amorphous hydrocarbon (HAC) absorption features in z~2 ULIRGs. These are based on deep rest-frame 2-8um Spitzer IRS spectra of 11 sources selected for their appreciable silicate absorption. The HAC-to-silicate ratio for our z~2 sources is typically higher by a factor of 2-5 than that observed in the Milky Way. This HAC `excess' suggests compact nuclei with steep temperature gradients as opposed to predominantly host obscuration. Beside the above molecular absorption features, we detect the 3.3um PAH emission feature in one of our sources with three more individual spectra showing evidence for it. Stacking analysis suggests that water ice, hydrocarbons, and PAH are likely present in the bulk of this sample even when not individually detected. The most unexpected result of our study is the lack of clear detections of the 4.67um CO gas absorption feature. Only three of the sources show tentative signs of this feature and at significantly lower levels than has been observed in local ULIRGs. Overall, we find that the closest local analogs to our sources, in terms of 3-4um color, HAC-to-silicate and ice-to-silicate ratios, as well as low PAH equivalent widths are sources dominated by deeply obscured nuclei. Such sources form only a small fraction of ULIRGs locally and are commonly believed to be dominated by buried AGN. Our sample suggests that, in absolute number, such buried AGN are at least an order of magnitude more common at z~2 than today. The presence of PAH suggests that significant levels of star-formation are present even if the obscured AGN typically dominate the power budget.Comment: 39 pages, 14 figures, accepted for publication in Ap

    HCN to HCO^+ Millimeter Line Diagnostics of AGN Molecular Torus I : Radiative Transfer Modeling

    Full text link
    We explore millimeter line diagnostics of an obscuring molecular torus modeled by a hydrodynamic simulation with three-dimensional nonLTE radiative transfer calculations. Based on the results of high-resolution hydrodynamic simulation of the molecular torus around an AGN, we calculate intensities of HCN and HCO^{+} rotational lines as two representative high density tracers. The three-dimensional radiative transfer calculations shed light on a complicated excitation state in the inhomogeneous torus, even though a spatially uniform chemical structure is assumed. Our results suggest that HCN must be much more abundant than HCO^{+} in order to obtain a high ratio (RHCN/HCO+2R_{HCN/HCO+}\sim 2) observed in some of the nearby galaxies. There is a remarkable dispersion in the relation between integrated intensity and column density, indicative of possible shortcomings of HCN(1-0) and HCO^{+}(1-0) lines as high density tracers. The internal structures of the inhomogeneous molecular torus down to subparsec scale in external galaxies will be revealed by the forthcoming Atacama Large Millimeter/submillimeter Array (ALMA). The three-dimensional radiative transfer calculations of molecular lines with high-resolution hydrodynamic simulation prove to be a powerful tool to provide a physical basis for molecular line diagnostics of the central regions of external galaxies.Comment: 29 pages, 13 figures, Accepted for publication in ApJ, For high resolution figures see http://alma.mtk.nao.ac.jp/~masako/MS72533v2.pd

    Infrared 3-4 Micron Spectroscopic Investigations of a Large Sample of Nearby Ultraluminous Infrared Galaxies

    Full text link
    We present infrared L-band (3-4 micron) nuclear spectra of a large sample of nearby ultraluminous infrared galaxies (ULIRGs).ULIRGs classified optically as non-Seyferts (LINERs, HII-regions, and unclassified) are our main targets. Using the 3.3 micron polycyclic aromatic hydrocarbon (PAH) emission and absorption features at 3.1 micron due to ice-covered dust and at 3.4 micron produced by bare carbonaceous dust, we search for signatures of powerful active galactic nuclei (AGNs) deeply buried along virtually all lines-of-sight. The 3.3 micron PAH emission, the signatures of starbursts, is detected in all but two non-Seyfert ULIRGs, but the estimated starburst magnitudes can account for only a small fraction of the infrared luminosities. Three LINER ULIRGs show spectra typical of almost pure buried AGNs, namely, strong absorption features with very small equivalent-width PAH emission. Besides these three sources, 14 LINER and 3 HII ULIRGs' nuclei show strong absorption features whose absolute optical depths suggest an energy source more centrally concentrated than the surrounding dust, such as a buried AGN. In total, 17 out of 27 (63%) LINER and 3 out of 13 (23%) HII ULIRGs' nuclei show some degree of evidence for powerful buried AGNs, suggesting that powerful buried AGNs may be more common in LINER ULIRGs than in HII ULIRGs. The evidence of AGNs is found in non-Seyfert ULIRGs with both warm and cool far-infrared colors. These spectra are compared with those of 15 ULIRGs' nuclei with optical Seyfert signatures taken for comparison.The overall spectral properties suggest that the total amount of dust around buried AGNs in non-Seyfert ULIRGs is systematically larger than that around AGNs in Seyfert 2 ULIRGs.Comment: 56 pages, 9 figures, accepted for publication in ApJ (20 January 2006, vol 637 issue

    Exploring the active galactic nucleus and starburst content of local ultraluminous infrared galaxies through 5-8 micron spectroscopy

    Full text link
    We present a 5-8 micron analysis of the Spitzer-IRS spectra of 71 ultraluminous infrared galaxies (ULIRGs) with redshift z < 0.15, devoted to the study of the role of active galactic nuclei (AGN) and starbursts (SB) as the power source of the extreme infrared emission. Around 5 micron an AGN is much brighter (by a factor 30) than a starburst of equal bolometric luminosity. This allows us to detect the presence of even faint accretion-driven cores inside ULIRGs: signatures of AGN activity are found in 70 per cent of our sample (50/71 sources). Through a simple analytical model we are also able to obtain a quantitative estimate of the AGN/SB contribution to the overall energy output of each source. Although the main fraction of ULIRG luminosity is confirmed to arise from star formation events, the AGN contribution is non-negligible (23 per cent) and is shown to increase with luminosity. The existence of a rather heterogeneous pattern in the composition and geometrical structure of the dust among ULIRGs is newly supported by the comparison between individual absorption features and continuum extinction.Comment: 56 pages, 13 figures, 4 tables. Accepted for publication in MNRA

    Supermassive Black Hole Mass Regulated by Host Galaxy Morphology

    Full text link
    We investigated the relationship between supermassive black hole (SMBH) mass and host starburst luminosity in Seyfert galaxies and Palomar-Green QSOs, focusing on the host galaxy morphology. Host starburst luminosity was derived from the 11.3 micron polycyclic aromatic hydrocarbon luminosity. We found that the SMBH masses of elliptical-dominated host galaxies are more massive than those of disk-dominated host galaxies statistically. We also found that the SMBH masses of disk-dominated host galaxies seem to be suppressed even under increasing starburst luminosity. These findings imply that final SMBH mass is strongly regulated by host galaxy morphology. This can be understood by considering the radiation drag model as the SMBH growth mechanism, taking into account the radiation efficiency of the host galaxy.Comment: 6 pages, 1 figure; accepted for publication in MNRA
    corecore